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Input data and methodological summary 
Definition 
Exposure 
High alcohol use is defined as alcohol consumption in excess of the theoretical minimum risk exposure 
level (TMREL), the level of alcohol consumption at which all-cause risk is minimised. Prior to GBD 2020, 
this risk factor was simply “Alcohol use” and quantified the burden of alcohol consumption over the 
entire exposure range. More details on the changes to the methodology can be found in the TMREL and 
“Population attributable fraction” sections of this appendix. 

We defined exposure as the grams per day of pure alcohol consumed among current drinkers. We 
constructed this exposure using the indicators outlined below: 

1. Current drinkers, defined as the proportion of individuals who have consumed at least one 
alcoholic beverage (or some approximation) in a 12-month period. 

2. Alcohol consumption (in grams per day), defined as grams of alcohol consumed by current 
drinkers, per day, over a 12-month period. 

3. Alcohol litres per capita (LPC) stock, defined in LBC of pure alcohol, over a 12-month period. 
 
 
 

We also used three additional indicators to adjust alcohol exposure estimates to account for different 
types of bias: 



1. Number of tourists within a location, defined as the total amount of visitors to a location within 
a 12-month period. 

2. Tourists’ duration of stay, defined as the number of days resided in a hosting country. 
3. Unrecorded alcohol stock, defined as a percentage of the total alcohol stock produced outside 

established markets. 

Input data 

Exposure 
A systematic review of the literature was performed to extract data on our primary indicators. The 
Global Health Exchange (GHDx), IHME’s online database of health-related data, was searched for 
population survey data containing participant-level information from which we could formulate the 
required alcohol use indicators on current drinkers and alcohol consumption. Data sources were 
included if they captured a sample representative of the geographical location under study. We 
documented relevant survey variables from each data source in a spreadsheet and extracted using 
STATA 13.1 and R 3.3. A total of 6926 potential data sources were available in the GHDx, of which 5764 
have been screened and 1206 accepted.   

Table 1: Data inputs for exposure for alcohol use 

  Countries with data New sources Total sources 
Exposure 202 323 10,724 

 

Relative risk 
For relative risks, in GBD 2016 we performed a systematic literature review of all cohort and case-
control studies reporting a relative risk, hazard ratio, or odds ratio for any risk-outcome pairs studied in 
GBD 2016. Studies were included if they reported a categorical or continuous dose for alcohol 
consumption, as well as uncertainty measures for their outcomes, and the population under study was 
representative.  
 
In GBD 2020, we undertook an effort to update the relative risk curves, beginning with six risk-outcome 
pairs that were among those associated with the greatest burden: ischaemic heart disease, ischaemic 
stroke, intracerebral haemorrhage, diabetes mellitus type II, lower respiratory infection, and tuberculosis. 
We refined the search strings to capture a larger number of studies than was identified by previous search 
strings. Studies published between 01/01/1970 and 12/31/2019 were reviewed. Of those articles 
captured, cohort and case-control studies were included if they reported an association between alcohol 
use and a GBD outcome, a continuous dose for alcohol consumption, and effect size (relative risk, hazard 
ratio, or odds ratio) with uncertainty. Information on study type, confounders controlled for, sample 
representativeness, and measurement of exposure and outcomes was also extracted.   

Table 2: Data inputs for relative risks for alcohol use 

  Countries with data New sources Total sources 
Relative risks 63 110 566 

 



Data processing 

Estimates of current drinking prevalence were split by age and sex where necessary. First, studies that 
reported prevalence for both sexes were split using a region-specific sex ratio estimated using meta-
regression—Bayesian, regularised, trimmed (MR-BRT).  Second, where studies reported estimates across 
non-GBD age groups, these were split into standard five-year age groups using the global age pattern 
estimated by ST-GPR.  
 

Table 3: MR-BRT sex splitting adjustment factors for current drinking 

Data input Gamma Beta coefficient, log 
(95% CI) 

Adjustment 
factor* 

Female: Male  0 -0.16 (-0.17 to -0.14) 0.85 
Age <50 0 0.06 (0.06–0.06) 1.07 
East Asia 0.36 -1.02 (-1.74 to -0.29) 0.36 
Southeast Asia 0.64 -1.06 (-2.34 to 0.22) 0.35 
Central Asia 0.41 -0.35 (-1.16 to 0.46) 0.70 
Central Europe 0.18 -0.21 (-0.58 to 0.14) 0.80 
Eastern Europe 0.10 -0.07 (-0.28 to 0.14) 0.93 
High-income Asia Pacific 1.27 -1.11 (-4.90 to 2.68) 0.33 
Western Europe 0.08 0.03 (-0.14 to 0.20) 1.03 
Southern Latin America 1.26 -0.67 (-4.18 to 2.84) 0.51 
High-income North America 0.09 -0.07 (-0.26 to 0.11) 0.93 
Caribbean 0.25 -0.52 (-1.02 to -0.03) 0.59 
Andean Latin America 0.76 -0.16 (-1.66 to 1.34) 0.85 
Central Latin America 0.30 -0.52 (-1.12 to 0.08) 0.59 
Tropical Latin America 0.08 -0.61 (-0.79 to -0.44) 0.54 
North Africa and Middle East 1.21 -1.44 (-3.91 to 1.03) 0.24 
South Asia 0.71 -1.17 (-2.57 to 0.23) 0.31 
Eastern sub-Saharan Africa 0.28 -0.53 (-1.10 to 0.03) 0.58 
Southern sub-Saharan Africa 0.20 -0.16 (-0.56 to 0.23) 0.85 
Western sub-Saharan Africa 0.32 -0.19 (-0.83 to 0.45) 0.83 
Oceania 0.94 -0.54 (-2.42 to 1.34) 0.58 

*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by which 
the alternative case definition is adjusted to reflect the ratio by which both-sex datapoints were split.  

 

To allow for the inclusion of data that did not meet our reference definition for current drinking, two 
crosswalks were performed using MR-BRT. The first crosswalk converted estimates of one-month 
drinking prevalence to what they would be if data represented estimates of 12-month drinking 
prevalence. This crosswalk incorporated two binary covariates: male and age ≥50. The second crosswalk 
converted estimates of one-week drinking prevalence to 12-month drinking prevalence. This crosswalk 
incorporated age <20 and male as covariates. The covariates utilised in both crosswalks were included as 
both x and z covariates. A uniform prior of 0 was set as the upper bound for the beta coefficients to 
enforce the logical constraint that one-month and one-week prevalence could not be greater than 12-
month prevalence. 

 



Table 4: MR-BRT crosswalk adjustment factors for alcohol use current drinking model 

Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit (95% UI)* 

Adjustment 
factor** 

12-month 
prevalence 

Ref --- --- --- 

1-month prevalence Alt  0.22 -0.60 (-1.05, -0.16) 0.55 (0.35, 0.85) 
Age ≥50 0.13 0.16 (-0.10, 0.43) 1.17 (0.9, 1.54) 
Male 0.29 0.01 (-0.57, 0.59) 1.01 (0.57, 1.8) 

1-week prevalence Alt 0.46 -1.51 (-2.42, -0.59) 0.22 (0.09, 0.55) 
Age <20 0.47 -0.29 (-1.34, 0.76) 0.75 (0.26, 2.14) 
Male 0.00 0.38 (0.15, 0.60) 1.46 (1.16, 1.82) 

*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to reflect what it 
would have been had it been measured using the reference case definition. If the log/logit beta coefficient is negative, then the 
alternative is adjusted up to the reference. If the log/logit beta coefficient is positive, then the alternative is adjusted down to 
the reference. 
**The adjustment factor column is the exponentiated beta coefficient. For log beta coefficients, this is the relative rate between 
the two case definitions. For logit beta coefficients, this is the relative odds between the two case definitions. 

The raw data used in the supply-side model are domestic supply (WHO GISAH; FAO) and retail supply 
(Euromonitor) of litres of pure ethanol consumed. Domestic supply is calculated as the sum of 
production and imports, subtracting exports. The WHO and FAO sources were combined, so that FAO 
data were only used if there were no data available for that location-year from WHO. This was done 
because the WHO source takes into consideration FAO values when available. Since the WHO data are 
given in more granular alcohol types, the following adjustments were made: 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.13 ∗ �
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
0.973

� 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.05 ∗ �
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
0.989

� 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.4 ∗ �
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

0.91
� 

 

Three outliering strategies are used to omit implausible datapoints and data that created implausible 
model fluctuations. First, estimates from the current drinking model are used to calculate the grams of 
alcohol consumed per drinker per day. A point is outliered if the grams of pure ethanol per drinker per 
day for a given source-location-year is greater than 100 (approximately 10 drinks). These thresholds 
were chosen by using expert knowledge about reasonable consumption levels. In the second round of 
outliering, the mean LPC value over a 10-year window is calculated. If a point is over 70% of that mean 
value away from the mean value, it is outliered. The 70% limit was chosen using histograms of these 
distances. Additionally, some manual outliering is performed to account for edge cases. Finally, data 
smoothing is performed by taking a three-year rolling mean over each location-year. 

Next, an imputation to fill in missing years is performed for all series to remove compositional bias from 
our final estimates. Since the data from our main sources cover different time periods, by imputing a 
complete time series for each data series, we reduce the probability that compositional bias of the 



sources is leading to biased final estimates. To impute the missing years for each series, we model the 
log ratio of each pair of sources as a function of an intercept and nested random effects on super-
region, region, and location. The appropriate predicted ratio is multiplied by the source that we do have, 
which generates an estimated value for the missing source. For some locations where there was limited 
overlap between series, the predicted ratio did not make sense, and a regional ratio was used. 

Finally, variance was calculated both across series (within a location-year) as well as across years (within 
a location-source). Additionally, if a location-year had one imputed point, the variance was multiplied by 
2. If a location-year had two imputed points, the variance was multiplied by 4. The average estimates in 
each location-year were the input to an ST-GPR model. This uses a mixed-effects model modelled in log 
space with nested location random effects. 

We obtained data on the number of tourists and their duration of stay from the UN World Tourism 
Organization.3 We applied a crosswalk across different tourist categories, similar to the one used for the 
LPC data, to arrive at a consistent definition (ie, visitors to a country). 

We obtained estimates on unrecorded alcohol stock from data available in WHO GISAH database,2 
consisting of 189 locations. For locations with no data available, the national or regional average was 
used.  

 

Modelling strategy  

Exposure  
While population-based surveys provide accurate estimates of the prevalence of current drinkers, they 
typically underestimate real alcohol consumption levels.10-12 As a result, we considered the LPC input to 
be a better estimate of overall volume of consumption. Per capita consumption, however, does not 
provide age- and sex-specific consumption estimates needed to compute alcohol-attributable burden of 
disease. Therefore, we use the age-sex pattern of consumption among drinkers modelled from the 
population survey data and the overall volume of consumption from FAO, GISAH, and Euromonitor to 
determine the total amount of alcohol consumed within a location. In the paragraphs that follow, we 
outline how we estimated each primary input in the alcohol exposure model, as well as how we 
combined these inputs to arrive at our final estimate of grams per day of pure alcohol. We estimated all 
models below using 1000 draws. 

For data obtained through surveys, we used spatiotemporal Gaussian process regression (ST-GPR) to 
construct estimates for each location/year/age/sex. We chose to use ST-GPR due to its ability to 
leverage information across the nearby locations or time periods. We also modelled the alcohol LPC 
data, as well as the total number of tourists, using ST-GPR. To improve the LPC model fit in years beyond 
those in which data was available, we forecasted ST-GPR estimates using a damped holt function. 

Given the heterogeneous nature of the estimates on unrecorded consumption, as well as the wide 
variation across countries and time periods, we took 1000 draws from the uniform distribution of the 
lowest and highest estimates available for a given country. We did this to incorporate the diffuse 
uncertainty within the unrecorded estimates reported. We used these 1000 draws in the equation 
below.  

We adjusted the alcohol LPC for unrecorded consumption using the following equation: 



𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿

(1 − % 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
 

 

We then adjusted the estimates for alcohol LPC for tourist consumption by adding in the per capita rate 
of consumption abroad and subtracting the per capita rate of tourist consumption domestically.   
 
  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 =

 
∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖,𝑙𝑙 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙 ∗ 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖,𝑙𝑙
365  ∗  𝑙𝑙

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑
  

where: 

𝑙𝑙 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒 Domestic consumption abroad 𝑜𝑜𝑜𝑜 Tourist consumption domestically, 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

 

After adjusting alcohol LPC by tourist consumption and unrecorded consumption for all location/years 
reported, sex-specific and age-specific estimates were generated by incorporating estimates modelled in 
ST-GPR for percentage of current drinkers within a location/year/sex/age, as well as consumption trends 
modelled in the ST-GPR grams per day model. We do this by first calculating the proportion of total 
consumption for a given location/year by age and sex, using the estimates of alcohol consumed per day, 
the population size, and the percentage of current drinkers. We then multiply this proportion of total 
stock for a given location/year/sex/age by the total stock for a given location/year to calculate the 
consumption in terms of LPC for a given location/year/sex/age. We then convert these estimates to be 
in terms of grams/per day. The following equations describe these calculations: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

=  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜  𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑  𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜  𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 𝑠𝑠,𝑎𝑎
 

 
 

𝐴𝐴𝐴𝐴𝑐𝑐𝑜𝑜ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

 % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎
 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗
789 𝑔𝑔/𝐿𝐿

365
 

 
where: 
 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. 



We then used the gamma distribution to estimate individual-level variation within location, year, sex, 
age drinking populations, following the recommendations of other published alcohol studies.7,8 We 
chose parameters of the gamma distribution based on the mean and standard deviation of the 1000 
draws of alcohol g/day exposure for a given population. Standard deviation was calculated using the 
following formula.15 We tested several alternative models using our data and found this model 
performed best.  
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (0.087 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +  1.171 ) 
 
Theoretical minimum risk exposure level 
The methods for calculating the TMREL were updated for GBD 2020. Previously, one global estimate of 
the TMREL was calculated. However, the contributions of each cause to overall health loss vary over 
geography, age, time, and sex, suggesting that the amount of alcohol that minimises health loss similarly 
varies over these domains. For this reason, in GBD 2020 we estimated an individual TMREL for each 
region, age, sex, and year. 
 
For each region, age, sex, and year, we calculated TMREL by first calculating the overall risk attributable 
to alcohol. We did this by weighting each relative risk curve by the share of overall DALYs for a given 
cause. We then took the minimum of this overall-risk curve as the TMREL of alcohol use. More formally,  
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜔𝜔(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜔𝜔,𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) =  � log (𝑅𝑅𝑅𝑅𝑖𝑖(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑)) ∗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠

∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠
𝜔𝜔
𝑖𝑖

𝜔𝜔

𝑖𝑖

 

Where:  
𝜔𝜔 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠, 

 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, y 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,   
𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑. 
 
In other words, we chose TMREL as being the exposure that minimises the risk of suffering burden from 
any given cause related to alcohol. We weight the risk for a particular cause in our aggregation by the 
proportion of DALYs due to that cause (eg, since more observed people die from ischaemic heart 
disease, we weight the risk for ischaemic heart disease more in the above calculation of average risk 
compared to, say, diabetes, even if both have the same relative risk for a given level of consumption). 
 
 
 
 
 
 
 
 
 
 
 



Figure 1: TMREL by region, age, and sex, 2020 

 
 
 
Relative risk 
For GBD 2016 through 2019, we used the studies identified through a systematic review to calculate a 
dose–response, modelled using DisMod ODE. We chose DisMod ODE rather than a conventional mixed-
effects meta-regression because of its ability to estimate non-parametric splines over doses (ie, for most 
alcohol causes, there is a non-linear relationship with different doses) and incorporate heterogeneous 
doses through dose-integration (ie, most studies report doses categorically in wide ranges. DisMod ODE 
estimates specific doses when categories overlap across studies, through an integration step.). We used 
the results of the meta-regression to estimate a non-parametric curve for all doses between zero and 
100 g/day and their corresponding relative risks. For all causes, we assumed the relative risk was the 
same for all ages and sexes.  
 
For GBD 2020, we used the studies identified through the updated systematic review to estimate new 
dose–response curves using MR-BRT for six outcomes among those associated with the greatest burden: 
ischaemic heart disease, ischaemic stroke, intracerebral haemorrhage, diabetes mellitus type II, lower 
respiratory infection, and tuberculosis. The relative risk curves for the remaining outcomes will be 
modelled using MR-BRT instead of DisMod ODE in the coming GBD rounds. Importantly, this new 
method takes into account the risk of biases in the relative risk estimation and incorporates unexplained 
between-study heterogeneity into the uncertainty of the relative risk estimates. The results of the meta-
regression were used to estimate a non-parametric curve for all doses between zero and 100 g/day and 
their corresponding relative risks.  
 



We implemented the Fisher Scoring correction to the heterogeneity parameter, which corrects for data-
sparse situations. In such cases, the between-study heterogeneity parameter estimate may be 0, simply 
from lack of data. The Fisher Scoring correction uses a quantile of gamma, which is sensitive to the number 
of studies, study design, and reported uncertainty. 

We have also added methodology that can detect and flag publication bias. The approach is based on the 
classic Egger’s Regression strategy, which is applied to the residuals in our model. In the current 
implementation, we do not correct for publication bias, but flag the risk-outcome pairs where the risk for 
publication bias is significant. 

In the table below, we list each risk-outcome pair that is updated in GBD 2020 along with several of the 
key modelling parameters and results. The formulation for MR-BRT is described in detail in the MR-BRT 
section of the appendix.  

Table 5: MR-BRT splines and priors by type of risk 

Risk-outcome Type of risk Spline degree, 
# interior knots 

Priors and constraints 

Ischaemic heart disease J-shaped Quadratic, 2 I knots No monotonicity constraint 
Ischaemic stroke J-shaped Quadratic, 3 I knots No monotonicity constraint, right linear tail 
Intracerebral haemorrhage J-shaped Cubic, 3 I knots No monotonicity constraint, right linear tail 
Type II diabetes mellitus J-shaped Cubic, 3 I knots No monotonicity constraint, right linear tail 

Tuberculosis 

Harmful Quadratic, 3 I knots Monotonic increasing, right linear tail, 
Gaussian max derivative prior on the right 
tail (0, 0.001) 

Lower respiratory infection 

Harmful Quadratic, 3 I knots Monotonic increasing, right linear tail, 
Gaussian max derivative prior on the right 
tail (0, 0.001) 

 
Table 6: MR-BRT parameters by risk-outcome pair 

Risk-outcome Type of risk Selected 
covariates 

Mean 
gamma 
solution 

Publication bias result 

Ischaemic heart disease J-shaped cv_incidence 0.158 No publication bias 
Ischaemic stroke J-shaped cv_incidence 0.234 No publication bias 

Intracerebral haemorrhage 
J-shaped cv_adjusted_2, 

cv_adjusted_1 0.09 No publication bias 
Type II diabetes mellitus J-shaped None 0.117 No publication bias 

Tuberculosis 
Harmful cv_sick_quitters, 

cv_incidence 19.488 No publication bias 
Lower respiratory infection Harmful None 0 No publication bias 

 

After evaluating all available evidence, we found insufficient evidence for a relationship between alcohol 
use and lower respiratory infection. Specifically, a simplified log-linear model was run, including only 
exposed and reference group dose data and study id as covariates, and a one-sided z-test was 
performed for the fixed-effects only model at alpha value set to 0.1. Based on this test, we removed 



alcohol use vs. lower respiratory infection as a risk-outcome pair for GBD 2020. Regarding injuries 
outcomes, we constructed relative risks based on chronic exposure to alcohol rather than acute 
exposure immediately preceding injury, which has a weaker relationship to the outcome, though still 
significant.15,16,18-21 We decided to use chronic exposure given the lack of available data on acute 
exposure, as well as the lack of cohort studies using acute exposure as a metric. Further, using chronic 
exposure allowed us to construct relative risks curves for unintentional injuries, interpersonal violence, 
motor vehicle accidents, and self-harm using the same method as reported above.  
 
 

Population attributable fraction 
 
We calculated population attributable fractions (PAFs) by setting the relative risk of alcohol 
consumption among abstainers and drinkers consuming alcohol below the TMREL to be 1. We then 
calculated PAFs for drinkers consuming alcohol in excess of the TMREL as we have previously. For each 
location, age, sex, year, and cause, we defined PAF as: 

 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  
𝑃𝑃𝐴𝐴+∫ 𝑃𝑃(𝑥𝑥)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

0   𝑑𝑑𝑑𝑑 + ∫ 𝑃𝑃(𝑥𝑥)100
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  ∗ 𝑅𝑅𝑅𝑅𝐶𝐶(𝑥𝑥)  𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑅𝑅𝐶𝐶(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

𝑃𝑃𝐴𝐴+∫ 𝑃𝑃(𝑥𝑥)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
0   𝑑𝑑𝑑𝑑 + ∫ 𝑃𝑃(𝑥𝑥)100

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  ∗ 𝑅𝑅𝑅𝑅𝐶𝐶(𝑥𝑥)  𝑑𝑑𝑑𝑑
  

 

𝑃𝑃(𝑥𝑥) = 𝑃𝑃𝐶𝐶 ∗ Γ(𝒑𝒑) 
 

 

where:  

𝑃𝑃𝐶𝐶  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑃𝑃𝐴𝐴 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎   

𝒑𝒑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦;  

𝑅𝑅𝑅𝑅𝑐𝑐(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙′𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  

 

We performed the above equation for 1000 draws of the exposure and relative risk models. We then 
used the estimated PAF draws to calculate YLL, YLDs, and DALYs, as per the other risk factors. 
 

For outcomes that are by definition caused by alcohol, such as liver cancer or cirrhosis due to alcohol 
use, PAFs are set to 1. PAFs for cirrhosis due to all causes that are in excess of the proportion of all 
cirrhosis burden due to alcohol are proportionally redistributed over cirrhosis due to hepatitis B, 
hepatitis C, and other causes. Similarly, PAFs for liver cancer due to all causes that are in excess of the 
proportion of all liver cancer burden due to alcohol are proportionally redistributed over liver cancer 
due to hepatitis B, hepatitis C, and other causes.   
 
In the case of motor vehicle accidents, we adjusted the PAF to account for victims of drunk drivers who 
are involved in accidents. Using data from the Fatality Analysis Reporting System (FARS) in the US,17 we 
calculated the average number of fatalities in a car crash involving alcohol, as well as the percentage of 
those fatalities distributed by age and sex (Figures 2 and 3). We aggregated FARS data across the years 



1985–2015, given there was little variation in the data temporally and the number of cases in old age 
groups had too much variance when constructing estimates by year. To adjust PAFs, we multiplied 
attributable deaths by the average number of fatalities from FARS and redistributed the PAF among 
each population, based on the probability of being a victim to a certain drunk driver by age and sex, 
based on the FARS data. The following equation describes this process: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑 ∗  𝑃𝑃(𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)𝑑𝑑

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
 

 
where: 
 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑑𝑑  
𝑑𝑑 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦.  
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Figure 3 
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